Numerical Solution of Two-Dimensional Linear Fuzzy Fredholm Integral Equations by the Fuzzy Lagrange Interpolation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of two-dimensional fuzzy Fredholm integral equations using collocation fuzzy wavelet like ‎operator‎

In this paper‎, ‎first we propose a new method to approximate the solution of two-dimensional linear fuzzy Fredholm integral equations of the second kind based on the fuzzy wavelet like operator‎. ‎Then‎, ‎we discuss and investigate the convergence and error analysis of the proposed method‎. ‎Finally‎, ‎to show the accuracy of the proposed method‎, ‎we present two numerical ‎examples.‎

متن کامل

numerical solution of two-dimensional fuzzy fredholm integral equations using collocation fuzzy wavelet like ‎operator‎

in this paper‎, ‎first we propose a new method to approximate the solution of two-dimensional linear fuzzy fredholm integral equations of the second kind based on the fuzzy wavelet like operator‎. ‎then‎, ‎we discuss and investigate the convergence and error analysis of the proposed method‎. ‎finally‎, ‎to show the accuracy of the proposed method‎, ‎we present two numerical ‎examples.‎

متن کامل

Applying fuzzy wavelet like operator to the numerical solution of linear fuzzy Fredholm integral equations and error ‎analysis

In this paper, we propose a successive approximation method based on fuzzy wavelet like operator to approximate the solution of linear fuzzy Fredholm integral equations of the second kind with arbitrary kernels. We give the convergence conditions and an error estimate. Also, we investigate the numerical stability of the computed values with respect to small perturbations in the first iteration....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Fuzzy Systems

سال: 2018

ISSN: 1687-7101,1687-711X

DOI: 10.1155/2018/5405124